Implicit Differentiation by Perturbation
نویسنده
چکیده
This paper proposes a simple and efficient finite difference method for implicit differentiation of marginal inference results in discrete graphical models. Given an arbitrary loss function, defined on marginals, we show that the derivatives of this loss with respect to model parameters can be obtained by running the inference procedure twice, on slightly perturbed model parameters. This method can be used with approximate inference, with a loss function over approximate marginals. Convenient choices of loss functions make it practical to fit graphical models with hidden variables, high treewidth and/or model misspecification.
منابع مشابه
Perturbation of Palindromic Eigenvalue Problems
We investigate the perturbation of the palindromic eigenvalue problem for the matrix quadratic P (λ) ≡ λA1 + λA0 + A1, with A0, A1 ∈ Cn×n and A0 = A0. The perturbation of palindromic eigenvalues and eigenvectors, in terms of general matrix polynomials, palindromic linearizations, (semi-Schur) anti-triangular canonical forms, differentiation and Sun’s implicit function approach, are discussed.
متن کاملImplementing the New First and Second Differentiation of a General Yield Surface in Explicit and Implicit Rate-Independent Plasticity
In the current research with novel first and second differentiations of a yield function, Euler forward along with Euler backward with its consistent elastic-plastic modulus are newly implemented in finite element program in rate-independent plasticity. An elastic-plastic internally pressurized thick walled cylinder is analyzed with four famous criteria including both pressure dependent and ind...
متن کاملA General Solution for Implicit Time Stepping Scheme in Rate-dependant Plasticity
In this paper the derivation of the second differentiation of a general yield surface implicit time stepping method along with its consistent elastic-plastic modulus is studied. Moreover, the explicit, trapezoidal implicit and fully implicit time stepping schemes are compared in rate-dependant plasticity. It is shown that implementing fully implicit time stepping scheme in rate-dependant plasti...
متن کاملSequential Implicit Numerical Scheme for Pollutant and Heat Transport in a Plane-Poiseuille Flow
A sequential implicit numerical scheme is proposed for a system of partial differential equations defining the transport of heat and mass in the channel flow of a variable-viscosity fluid. By adopting the backward difference scheme for time derivative and the central difference scheme for the spatial derivatives, an implicit finite difference scheme is formulated. The variable-coefficient diffu...
متن کاملDirect and Indirect Timing Functions in Unilateral Hemispheric Lesions
Introduction: The neural substrates of temporal processing are not still fully known. The majority of interval timing studies have dealt with this subject in the context of “Explicit timing” (computing the time intervals explicitly). The hypothesis “Implicit timing” (implicitly using temporal processing to improve function) has also proposed. This lesion study addressed explicit and implicit ti...
متن کامل